Moving Fuzzy K-Means Conventional Clustering Algorithms for Microscopic Images

نویسنده

  • P. Nageswara Rao
چکیده

Clustering algorithms have successfully been applied as a digital image segmentation technique in various fields and applications. However, those clustering algorithms are only applicable for specific images such as medical images, microscopic images etc. In this paper, we present a new clustering algorithm called Adaptive FuzzyK-means (AFKM) clustering for image segmentation which could be applied on general images and/or specific images (i.e., medical and microscopic images), captured using different consumer electronic products namely, for example, the common digital cameras and CCD cameras. The algorithm employs the concepts of fuzziness and belongingness to provide a better and more adaptive clustering process as compared to several conventional clustering algorithms. Both qualitative and quantitative analyses favour the proposed AFKM algorithm in terms of providing a better segmentation performance for various types of images and various number of segmented regions. Based on the results obtained, the proposed algorithm gives better visual quality as compared to several other clustering methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated two-dimensional K-means clustering algorithm for unsupervised image segmentation

This paper introduces the Automated Two-Dimensional K-Means (A2DKM) algorithm, a novel unsupervised clustering technique. The proposed technique differs from the conventional clustering techniques because it eliminates the need for users to determine the number of clusters. In addition, A2DKM incorporates local and spatial information of the data into the clustering analysis. A2DKM is qualitati...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition

 In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...

متن کامل

Two-Dimensional Clustering Algorithms for Image Segmentation

This paper introduces modified versions of the K-Means (KM) and Moving K-Means (MKM) clustering algorithms, called the Two-Dimensional K-Means (2D-KM) and Two-Dimensional Moving KMeans (2D-MKM) algorithms respectively. The performances of these two proposed algorithms are compared with three of the commonly used conventional clustering algorithms, namely K-Means (KM), Fuzzy C-Means (FCM), and M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014